
SANDIA REPORT
SAND2014-20563
Unlimited Release
Printed Month and Year

Generalized Information Architecture for
Managing Requirements in IBM’s
Rational DOORS® Application

Kathryn Mary Aragon
Shelley Margit Eaton
Marjorie Turner McCornack
Sharon Anne Shannon

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's
National Nuclear Security Administration under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

Version 1.0 2 November 2014

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government, nor any agency thereof,
nor any of their employees, nor any of their contractors, subcontractors, or their employees,
make any warranty, express or implied, or assume any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represent that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government, any agency thereof, or any of
their contractors or subcontractors. The views and opinions expressed herein do not
necessarily state or reflect those of the United States Government, any agency thereof, or any
of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd.
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online order: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

mailto://reports@adonis.osti.gov
mailto://reports@adonis.osti.gov
http://www.osti.gov/bridge
mailto://orders@ntis.fedworld.gov
mailto://orders@ntis.fedworld.gov
http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online
http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

Version 1.0 3 November 2014

SAND2014-20563
Unlimited Release

Printed Month Year

Generalized Information Architecture for
Managing Requirements in IBM’s Rational

DOORS® Application

Kathryn Mary Aragon
Shelley Margit Eaton

Marjorie Turner McCornack
Sharon Anne Shannon

High Confidence System Environments, Org. 6923
Sandia National Laboratories

P.O. Box 5800
Albuquerque, New Mexico 87185-MS1138

Abstract

When a requirements engineering effort fails to meet expectations, often times the
requirements management tool is blamed. Working with numerous project teams at
Sandia National Laboratories over the last fifteen years has shown us that the tool is
rarely the culprit; usually it is the lack of a viable information architecture with well-
designed processes to support requirements engineering. This document illustrates
design concepts with rationale, as well as a proven information architecture to
structure and manage information in support of requirements engineering activities
for any size or type of project. This generalized information architecture is specific to
IBM’s Rational DOORS (Dynamic Object Oriented Requirements System) software
application, which is the requirements management tool in Sandia’s CEE (Common
Engineering Environment). This generalized information architecture can be used as
presented or as a foundation for designing a tailored information architecture for
project-specific needs. It may also be tailored for another software tool.

Version 1.0 4 November 2014

Version 1.0 5 November 2014

CONTENTS

1. Introduction...9
1.1. Document Scope..9
1.2. ReqMAPS Team..9
1.3. Benefits of Using a Generalized Information Architecture ...10

2. Information Architecture Definition...11
2.1. Project and Folder Structure ..11
2.2. Requirement Trace Model ...16

2.2.1. Modules ...16
2.2.2. Linking...16
2.2.3. Retrofitting Documents into DOORS Linking Model.....................................19
2.2.4. Folder, Module, and Linking Models ..20
2.2.5. Linking with DOORS Tables ..23

2.3. Access Control and Permissions..23
2.3.1. Designing the Security Model ...23
2.3.2. Security Model Rules and Assumptions..26
2.3.3. Sandia Metagroups ..26
2.4.4. DOORS Group for External Users ..27
2.3.5. Logical Metagroups on SCN ...27
2.4.6. Metagroup Naming Standards ...28

2.4. Options for Relating Information in DOORS..29
2.5. Custom Attributes and Types for Requirements ...31
2.6. Custom Views for Requirements...34
2.7. Reporting and Exporting Data ...36

2.7.1. Reporting Options..36
2.7.2. Report Formatting and Information Architecture..37

3. Key Information Architectural Concepts..39
3.1. Defining the DOORS Requirements Management Project ...39

3.1.1. DOORS Project Roles and Responsibilities ..39
3.1.2. Centralized versus Decentralized Approaches ..39
3.1.3. Requirements Management Project Scope ..40
3.1.4. Tool Functionality ...41
3.1.5. Integration with Data in Other Tools...41
3.1.6. Resources to Support the Project Scope ..41

3.2 Interacting with the DOORS Data ...42
3.2.1. Creating Requirements ..42
3.2.2. Updating, Viewing, and Linking Requirements ..44
3.2.3. Reporting ...44

3.3. Modeling the DOORS Information ...46
3.3.1 Information Architecture Concepts ...46
3.3.2 Module Architecture Approaches..47
3.3.3. SCN vs. SRN DOORS...48
3.3.4. Describing and Viewing Data Content ..49

3.4. Security Model...49

Version 1.0 6 November 2014

3.5. Supporting the Requirements Engineering Process...50
3.5.1. Data Content and Information Architecture Change Management50
3.5.2. Baselining ..52

4. References...57

Distribution ..58

FIGURES

Figure 1: The Standard Folder Structure ...12
Figure 2: Requirements Folder Structure Supporting Linking Model...13
Figure 3: Allowable Linksets...17
Figure 4: One of the Linksets is Not Allowed...17
Figure 5: Linking Model Example ..19
Figure 6: Folder, Module, and Linkset Model for the satisfies Vertical Structure........................21
Figure 7: Folder, Module, and Linkset Model for satisfies Flat Structure22
Figure 8: Folder, Module, and Linkset Model for integrates_with Flat Structure22
Figure 9: Example Security Model..25
Figure 10: Logical Metagroup Model with Examples...27
Figure 11: Object Data With Formatting...45
Figure 12: Object Data Without Formatting..45
Figure 13 Baseline Sets and the Impact on Linked Information ...54
Figure 14: The Baseline Folder Structure..56

TABLES

Table 1: Example Projects and Folders with Descriptions ..13
Table 2: Example DOORS Link Modules and Descriptions...19
Table 3: Options for Retrofitting Documents into DOORS Linking Model19
Table 4: Security Model Rules and Assumptions..26
Table 5: Standard Abbreviations ...28
Table 6: Example Metagroup Descriptions and IDs..29
Table 7: Options for Relating Information in DOORS ...30
Table 8: Standard Custom Attributes and Types for Requirement Objects31
Table 9: Other Custom Attributes and Types for Requirement Objects32
Table 10: Example Standard Public Views for Users ...36
Table 11: Options for Producing Reports ..37
Table 12: Reporting Options and the Effects on the Information Architecture38
Table 13: Requirements Management Topics ...39
Table 14 Example Business Rules...43

Version 1.0 7 November 2014

NOMENCLATURE

CD Compatibility Definition, which is a Nuclear Weapons requirements document
CEE Common Engineering Environment
CKP Checkpoint Baseline in DOORS
D&P Manual Development and Production Manual, Nuclear Weapons
DOORS IBMs Dynamic Object Oriented Requirements System software application
DXL DOORS eXtension Language
ESN Enterprise Secure Network
FML Formal Baseline in DOORS
ORM Object Role Modeling methodology
PS Toolbox A DOORS add-in for custom DXL scripts
RAFTS Reliable Automated File Transfer Service
ReqMAPS Requirements Management, Architecture, and Process Solutions team
RPE IBM’s Rational Publishing Engine software application
RTC IBM’s Rational Team Concert software application
SCN Sandia Classified Network
SRN Sandia Restricted Network
TBP Technical Business Practices, Nuclear Weapons
V&V Verification & Validation

Version 1.0 9 November 2014

1. INTRODUCTION

IBM’s Rational DOORS (Dynamic Object Oriented Requirements System) software application
is the requirements management tool in Sandia’s CEE (Common Engineering Environment).
This document illustrates a proven information architecture to structure and manage data content
in support of requirements engineering activities for any size or type of requirements project.
These activities include requirement development, data creation and editing, setting permissions
and access control, demonstrating traceability, baselining, and report generation. While this
document is written specifically for DOORS, the concepts can be applied to other requirements
software applications.

1.1. Document Scope

Information architecture, as discussed in this document, includes the folder organization, module
definitions, attribute definitions, type definitions, views, linksets, traces, and security model for
an individual or enterprise-wide requirements management project. This generalized information
architecture can be used as presented or as a foundation for designing a tailored information
architecture for project-specific needs.

While we understand that every project has unique circumstances and data, there are numerous
architectural structures and concepts for managing requirements that apply to every project. This
document provides recommendations and options for designing an information architecture that
will ensure the data can be used to meet project needs, as well as adhering to industry standard
requirements management and software engineering processes and practices.

The authors of this document assume that readers have a fundamental understanding of the
DOORS tool, requirements engineering concepts, and associated terminology. DOORS terms
and definitions can be found in DOORS help files or the DOORS Quick Reference Guide on
Sandia’s DOORS SharePoint site at
https://sharepoint.sandia.gov/sites/DOORS/SitePages/Home.aspx.

1.2. ReqMAPS Team

The ReqMAPS (Requirements Management, Architecture, and Process Solutions) Team in the
High Confidence System Environments Organization, currently Org. 6923, designs and
implements requirement management systems at Sandia National Laboratories. The team has a
combined experience of over 20 years working with the IBM Rational suite of tools, in addition
to decades of software engineering experience. This includes the following Rational tools:

 DOORS (Dynamic Object Oriented Requirements System) for requirements management

 RPE (Rational Publishing Engine) for reporting

 RTC (Rational Team Concert) for change management at the requirement object level

 DXL (Rational DOORS eXtension Language) for custom scripts

 IBM Rhapsody Model Based Systems Engineering and Rational Gateway tools

https://sharepoint.sandia.gov/sites/DOORS/SitePages/Home.aspx
https://sharepoint.sandia.gov/sites/DOORS/SitePages/Home.aspx
https://sharepoint.sandia.gov/sites/DOORS/SitePages/Home.aspx
https://sharepoint.sandia.gov/sites/DOORS/SitePages/Home.aspx
https://sharepoint.sandia.gov/sites/DOORS/SitePages/Home.aspx
https://sharepoint.sandia.gov/sites/DOORS/SitePages/Home.aspx
https://sharepoint.sandia.gov/sites/DOORS/SitePages/Home.aspx

Version 1.0 10 November 2014

1.3. Benefits of Using a Generalized Information Architecture

There are several advantages of a generalized information architecture in DOORS, as listed
below.

1. The cost of designing and implementing a new requirements management project are
reduced, as costly mistakes are eliminated by re-using a proven architecture.

2. An information architecture for a new project can be created in a reduced amount of time.

3. Architects who manage multiple requirements projects work more efficiently, as they
don’t have to support and maintain different architectures. When advancements are made,
they can be applied to the generalized information architecture for future projects and
also existing projects, if applicable.

4. A single requirement may trace to requirements in several different requirements
projects, such as a component requirement that is linked to several assembly or product
requirements. Using a common information architecture in these projects mitigates
tracing and reporting problems that arise from having to work around multiple
architectures. It also may reduce or eliminate the need for custom DXL scripts.

5. The effort and cost of transitioning to a new requirements management tool is less as it
reduces the learning curve of understanding and handling the various architectures.

6. DXL code written to support requirements management activities can be more easily
shared across projects.

Common information architecture elements include the following:

 Folder and module structure for administrative and requirement information

 Standard linking models for relating various types of requirements information

 Reusable link modules for the same type of linking relationship or a full trace

 Template of attributes, types, and views that can be imported into various types of
requirement modules

 Security model using Sandia’s metagroups

Version 1.0 11 November 2014

2. INFORMATION ARCHITECTURE DEFINITION

2.1. Project and Folder Structure

DOORS projects and folders are containers of information, specifically formal modules and link
modules. Sub-folders may be created that contain several modules.

The folders are listed in alphabetical order by default and are hierarchical (parent and child
folders). Because of the alphabetical ordering of the folders, underscores, which come out before
any alphabetic characters in sort order, are sometimes used at the beginning of folder names so
that the folder will be listed toward the top of the folder structure, and the letter Z is sometimes
used at the beginning of a folder name so that the folder will be listed near the end of the folder
structure. The requirements portion of the folder and sub-folder structure can be designed to
support traceability, but it is not required. For a smaller project, it may suffice to place all
requirement modules in one folder.

For some projects, the requirements traceability hierarchy may be different from the physical
product structure or the bill of materials. In fact, usually the structure tends to more closely
resemble a document structure hierarchy than a physical product structure. If the project has
traditionally managed requirements in a document-centric model, you may decide to replicate
that structure in DOORS. Note that the document structure may be quite convoluted and may not
translate well to an object-oriented database structure, which DOORS is.

However you design the structure, you need to model and test the structure to ensure that you can
create the requirement traces and generate reports that are needed by your team and customer.
The ReqMAPS team uses the Object Role Modeling (ORM) methodology to model the project
and folder structure, as well as for the attributes, views, and linksets. We have used this
methodology for over 20 years to design relational databases, but it can also be used to design
object oriented databases. This methodology provides a way to validate the needs with the users
and the concrete examples verify that the design is correct. More information on ORM can be
found at www.orm.net.

In our generalized information architecture, the modules in each requirements sub-folder contain
information that is at the same level in the linking model. Figure 1 illustrates our standard folder
structure. Figure 2 illustrates using the requirement folder structure to support the satisfies
linking model and also the allocated_to attribute. Additional folders may be needed to meet the
needs of your project, and some example folders are described in Table 1.

http://www.orm.net

Version 1.0 12 November 2014

2_Level

Rqmts

6_Level

3_Level

1_Level

ProjectName

_Admin

Audit

TempArchive

Architecture

<sandboxname>_Sandbox

_LinkModules

ImportStaging

Key

Project

Folder

4_Level

5_Level

BusinessRules

Templates

Playground

RqmtsBaselineSets

Figure 1: The Standard Folder Structure

Version 1.0 13 November 2014

Level 2

Level 3

Level 4

Level 1

allocated to

allocated to

allocated to satisfies

satisfies

satisfies

Figure 2: Requirements Folder Structure Supporting Linking Model

Table 1: Example Projects and Folders with Descriptions

Project/Folder Name Description

DOORS Database
 <Your Project>

This is the parent project folder, whose parent is the DOORS database.

Non-requirement Folders: These folders are used by the DOORS Requirements Management team. The
name of the folder starts with an underscore to place it at the beginning of the alphabetized folder list.
Folder names beginning with a “Z” are placed at the end of the alphabetized folder list. The reason for
separating this information into several parent folders is to meet varying access control requirements.

_Admin Contains administrative-related modules for the purpose of managing the
DOORS project. Access controls may be different from the requirements
folders.

Architecture Documents the DOORS information architecture, such as the unique
module prefixes, attributes, types, and views. Includes an information
architecture change log with details that may not be suitable to record in an
information architecture document.

Audit Stores the results of executing auditing scripts to check if any unauthorized
changes were made to attributes, modules, and views. Also stores metrics
about the DOORS data.

Version 1.0 14 November 2014

BusinessRules Contains the rules of how requirements engineering activities are
accomplished. These rules are project specific. They are stored in a
module so that everyone has at least read access.

ImportStaging Contains modules that are the result of imports from an external file such
as an MS Word document or Excel spreadsheet. This is a staging location
for imported requirements that need formatting modifications to be made
before releasing to the project team for requirement content viewing and
editing. Each module is eventually moved to its permanent folder location.

RqmtsBaselineSets Contains sub-folders of baseline sets for each requirement level folder.
Does not include formal baselines.

TempArchive Contains modules and folders that are no longer needed, but temporarily
stored in case they are needed for reference. Sub-folders of this folder can
be created as necessary for archiving modules. If the modules moved here
contain links, the links will need to be deleted or it will cause problems
with editing in the linked-to modules.

Templates Contains one or more modules that are used for consistent information
architecture for a similar type of module, such as requirements for a
project. This includes attributes, types, and views, and may also include
data content structure. A template module is the “source of truth” from
which modules are created. Modules in this folder will be named after the
type of module for which they are to be used. Also contains module
templates that are Works In Progress (WIP) and are not ready to be
released.

_AuxiliaryData Contains modules with data that supplements the requirements data, that is
of value to all users, and may be linked from requirements modules, such
as

 Glossary.lup, a list of project-related word and abbreviation
definitions

 StandardAbbreviations.lup, a list of relevant abbreviations

_Common Contains information that is common to requirement modules, but does not
contain requirements.

_DocReference Contains modules that have a list of documents that may be referenced in
requirement objects or related in some way to the requirements. The list of
documents can be separated into different modules or kept in one module
but separated by use of an attribute, such as att.DocType.

_LinkModules Contains all of the link modules used for linking in a project. Managing
them in one folder allows for better access control and implies that they
can be used across the entire project. It also makes it easier to find the link
modules.

Version 1.0 15 November 2014

_Qualification Contains information about qualifying any requirement at any level.
Modules in this folder are source modules for linking to requirement
objects in the target modules. This is architected so that qualification staff
have full access to the qualification information, but only read access to
requirements modules. Conversely, people responsible for writing
requirements only have read access to the qualification information.

_Verification Contains summary information about verifying any requirement at any
level. This is a target module for linking from requirement objects. This is
architected so that verification staff has full access to the verification
information, but only read access to requirements modules. Conversely,
people responsible for writing requirements only have read access to the
verification information.

Requirement Folders: These folders organize the various levels of requirements so that the linking
model is supported when linking is done from one level up to the next level.

Rqmts The parent folder for all of the requirements modules. The single parent
requirement folder supports inheritance for security, the running of scripts
that affect all requirement modules and requires a parent folder to be
specified, and separates requirement modules from administrative
modules. The folder name is abbreviated to keep the path name as short as
possible.

1_Customer Customer requirements that are created and controlled outside of Sandia
National Laboratories but are imported into DOORS for the purpose of
linking. Contains the requirements from one or more customer sources.
The folder name begins with a number to force the order of the folders.

2_Restatement Customer requirements that are maintained by Sandia National
Laboratories or a restatement of the customer requirements. A restatement
of the customer requirements is often necessary as there could be missing
or conflicting requirements from multiple customers, a single requirement
that actually contains multiple requirements, or customer requirements that
need to be reworded for clarity. The 2_Restatement module(s) are linked
to the 1_Customer module(s).

3_System System requirements and design modules that are linked to the
2_Restatement module(s).

4_SubSystem Subsystem requirements and design modules that are linked to the
3_System modules.

5_Component Component requirements and design modules that are linked to the
4_SubSystem modules.

6_SubComponent Subcomponent requirements and design modules that are linked to the
5_Component modules.

7_<nextLevel> If requirements are tracked beyond the SubComponent level, then the
general pattern of numbering and naming the requirements folders can be
continued as needed.

Version 1.0 16 November 2014

Playground Folders: These folders are located in the Playground Project

Playground Project
<ownerID>_Sandbox
<name>_Sandbox

This project contains folders and modules that are used as sandbox areas
for people to try out processes, structures, concepts, and so forth in
DOORS. The folders under this project should have Sandbox in the name.
The module name starts with some sort of owner identification, such as the
owner’s username, or any descriptive text and then the _Sandbox is added.
We recommend that no real data be stored in the Playground because the
permissions on the data potentially may not adequately secure the
information. If real data is stored in the Playground, then a business rule
will state how the access controls are to be modified.
The Playground is a project and not a folder so that when “real”
requirements modules are copied into the Playground, none of the links are
copied. This prevents problems with editing requirements in the “real”
requirement modules.

2.2. Requirement Trace Model

2.2.1. Modules

Whether the requirements will be created directly in DOORS or imported from other files, a
module/linking model should be created that supports linking, tracing, and reporting. The
advantage of creating the requirements directly into DOORS with a defined information
architecture is that people are aware of what modules to link to and what modules will be linked
to their module. In addition, the authors will create requirements to support the module/linking
model, such as the satisfies relationships.

Looking at the entire set of requirements information to manage in DOORS, their relationships,
what reports are needed, who needs access for editing and linking, and the sensitivity of the data
content will determine how to segment the information into modules. Draw the model on the
white board or in a tool such as Visio. Then validate the model by mapping the requirements
information into the model.

2.2.2. Linking

The key to the requirements traceability hierarchy is that requirements are allocated down and
traced up. Because of the tracing up, DOORS linking is from the “lower” level to the next
“level” up. Levels should never be skipped, as it causes problems with traceability reports. For
allocating down, your project may use an allocation attribute or if there is a large number of
items that can be allocated to, then your project may want to use linking to show allocation, and
thus, have an allocated_to linkset.

The same linkset is reused between the levels’ modules, which supports a full trace and separates
this kind of relationship from others for reporting purposes. It is not necessary to create different
link modules between any pair of modules. The link module is the verb of the relationship
between two modules.

Version 1.0 17 November 2014

The direction of the linkset is important because the linking data is stored in the source module.
Thus, people who are linking need at least create, modify, and delete permissions in the source
module. Read access is all that is needed for the target module. However, as far as traceability is
concerned, the direction of the linksets is not important. We’ve already indicated that you “link
up” for the standard satisfies trace. But other relationships between the same modules can have
linksets created in the opposite direction. While this might seem “wrong” at first, it is perfectly
acceptable.

We have included a conceptual model shown in Figure 5 that can be used as an example of
linksets used for traceability with qualification, documentation, and requirement information.
Note that the information is “linked up” for the satisfies relationships. Therefore, modules in the
lowest level of the relationship pair are the source modules. However, the Qualification module
is the source module, which is designed to support access control needs. The
DocumentReference module is the target module for all of the requirements modules.

All linksets should be explicitly created in DOORS, following the linkset definitions illustrated
in the linking model, in the production environment prior to any linking activities. If a linkset has
not been created prior to linking, DOORS will create a default DOORS link module. This default
link module should never be used. An auditing script can be used to find and delete these default
link modules that were erroneously created, after testing ensures that no links have been created
using these default link modules.

DOORS has constraints on what linksets can be created. DOORS allows only one linkset
between the same source and target modules. Figure 3 illustrates an example of what linksets are
possible in DOORS. Figure 4 shows an example where one of the linksets is possible; but not
both linksets.

Source
Module

Target
Module A

satisfies

Target
Module B

satisfies

has

Figure 3: Allowable Linksets

Source
Module

Target
Module A

satisfies

hasX
Figure 4: One of the Linksets is Not Allowed

Version 1.0 18 November 2014

<module>

<module>

<module>

<module>

<module>

<module>

Document
Reference

1_Customer

2_Restatement

3_System

4_SubSystem

Folder Legend

Qualification

<module> <module>

Linksets

satisfies

documented_in

qualifies

5_Component

<module> <module> <module> <module>

Version 1.0 19 November 2014

Figure 5: Linking Model Example

Table 2: Example DOORS Link Modules and Descriptions

Link Module
Name Description

documented_in Links from any object to related documentation

has A general link module

is_related_internally Links within the same module

qualifies Links from qualification activity to requirements

satisfies Links to requirements in the level above

satisfies_design Links between a design object and a requirement, direction of the link can
be either from requirement to design object or vice versa

stored_in Links from document reference to a repository described in a module

verified_by Links to verification activities

2.2.3. Retrofitting Documents into DOORS Linking Model

If the requirement documents have been created and released prior to defining the DOORS
modules and the linking model, it is likely that the released requirements documents will not fit
into the desired DOORS information architecture, and linking difficulties may occur. Table 3
lists options for addressing this situation, including advantages and disadvantages of each option.

Table 3: Options for Retrofitting Documents into DOORS Linking Model

Options Advantages Disadvantages
1. Link as best as possible

with the current
modules.

 Illustrates potential gaps in
requirements, as well as options
for reorganizing data for better
understanding.

 Shoehorning links into a poorly
designed linking information
architecture will be difficult or
impossible to understand and
maintain over time.

 May not meet the needs of the
program.

 May not be able to process adequate
requirements traceability reports.

2. Link from Heading to
Heading (or
Requirement to
Heading) instead of
Requirement to
Requirement.

 Requirement traceability reports
can be generated, with a coarse
granularity for traceability.

 The coarser granularity of
traceability may not meet needs of
the program.

 Headings could also be missing, and
the linking still would not be
possible.

 Does not follow accepted standards
for requirements traceability.

Version 1.0 20 November 2014

Options Advantages Disadvantages
3. Baseline the current

requirement set, insert
requirements into the
DOORS modules that
are missing to
accomplish linking for a
satisfies traceability.
Create a view using an
attribute to filter out
inserted requirements to
generate the
requirements
specification.

 Updating a released requirements
specification document is
unnecessary because the latest
release is still reproducible.

 Requirements specification
documentation can be re-released
in the future from DOORS.

 Gap analysis is now possible on
requirements using automated
means.

 Requirements traceability reports
can be generated with a fine level
of granularity.

 Requirements traceability report data
will not be in sync with released
requirements specification
documentation.

 Engineers may be confused with the
differences in the released
documentation and DOORS.

 Expensive and time consuming to
add requirements to DOORS that are
not in the released versions of the
requirements specification
documentation to achieve
traceability.

4. Split apart existing
DOORS modules in
order to achieve a
hierarchy to accomplish
linking for satisfies
traceability.

 Modules can be brought back
together to produce requirements
specification documentation as
originally imported into DOORS
using the RPE (Rational
Publishing Engine) tool.

 Traceability for a fine level of
granularity for the satisifies
relationships is possible.

 Architecture is complicated, and
therefore difficult to understand and
maintain.

 Requirements could still be missing
for accomplishing the satisfies
traceability.

 RPE templates and specs would have
a higher degree of complexity, and
RPE expertise is limited at Sandia
Labs.

 The mapping between the original
requirements specification
documentation and the DOORS
modules could be confusing to team
members.

5. Design and implement a
satisfactory linking
model, rewrite the
requirements
specification
documentation using
DOORS, link the
requirements, generate
the requirements
specification
documentation, and re-
release the
documentation.

 Gap analysis is possible on
requirements using automated
means.

 Requirements traceability reports
can be generated at a fine level of
granularity.

 Architecture, specifically the
linking model, is easy to
understand and maintain.

 Meets the general standards of
requirement traceability.

 Meets the needs of the project.

 Expensive and time consuming to
write and review requirements and
re-release the requirements
specification documentation.

 The information is organized
differently from the traditional
document structure that engineers are
familiar with, and they may have
difficulty finding information.

2.2.4. Folder, Module, and Linking Models

Below are two generalized examples of the folder, module, and linkset model. The 1_Level
folder could contain the customer requirements and the 2_Level folder the System requirements.
Note that a linkset never skips a level. This is important to maintain the integrity of your traces.
Figure 6 is the more traditional vertical structure, Figure 7 is a flattened satisfies structure, and
Figure 8 is the same flattened structure that can be used when the document set does not fit in the
traditional satisfies trace.

Version 1.0 21 November 2014

3_Level Folder

2_Level Folder

1_Level Folder

satisfies

Module 1 Module 2

Module 3

satisfies

Module 4 Module 5

satisfies satisfies

4_Level Folder

Module 6 Module 7 Module 8 Module 9

satisfies satisfies satisfies satisfies

Figure 6: Folder, Module, and Linkset Model for the satisfies Vertical Structure

Version 1.0 22 November 2014

3_Level Folder

2_Level Folder

1_Level Folder

satisfies

Module 1 Module 2

Module 3

satisfies

Module 6 Module 7 Module 8 Module 9

satisfies satisfies satisfies satisfies

satisfies satisfiessatisfies

satisfies
satisfies

satisfies

Figure 7: Folder, Module, and Linkset Model for satisfies Flat Structure

3_Level Folder

2_Level Folder

1_Level Folder

satisfies

Module 1 Module 2

Module 3

satisfies

Module 6 Module 7 Module 8 Module 9

satisfies satisfies satisfies satisfies

integrates with integrates withintegrates with

integrates with
integrates with

integrates with

Figure 8: Folder, Module, and Linkset Model for integrates_with Flat Structure

Version 1.0 23 November 2014

2.2.5. Linking with DOORS Tables

We recommend that projects not use the table functionality built into DOORS. DOORS tables cause
problems with linking to requirements stored in table cells and generating accurate traceability reports
with RPE. In addition, contextual information is lost by linking to a table cell, as the table name and
column headings are not shown in traceability reports.

Each requirement stored in DOORS tables should be entered as an individual, stand-alone requirement
object in a DOORS module. However, there may be a visual value in displaying the information in a table
format for the viewers. If that is the case, the information can also be formatted in a table, saved as a
graphic, and imported into DOORS. The key is to ensure that the data in the table is in sync with the
individual requirement objects. If they become out of sync, the individual requirement object is
considered to be the correct version. If the syncing problem continues, the graphic should be deleted from
DOORS to avoid confusion.

2.3. Access Control and Permissions

2.3.1. Designing the Security Model

Designing the access control model cannot be done in isolation. All factors must be considered
simultaneously while understanding project or program priorities for managing the information
and include the following:

1. The project/folder/module structure

2. The NTK (need-to-know) constraints placed on the data

3. Roles people play on the project, which define their responsibilities and permissions in
DOORS

A viable security model balances appropriate access with the ability to maintain the implemented
security model. The DOORS access inheritance feature is used whenever possible to minimize
the administrative burden of maintaining the implemented security model. Therefore, any break
in the access inheritance is kept as high in the folder hierarchy as possible. We recommend that
all modules inherit the access control from its parent folder. All objects in modules inherit the
security controls from its parent module. A compelling argument needs to be established to
override this rule, and it needs to be well documented because having security controls on
objects within a module requires significantly more maintenance.

Here are some considerations for designing the security model that are especially applicable to a
large or compartmentalized project.

 Using the information gathered on the roles and responsibilities of the project team
members and the security risk analysis, a security model for controlling access and
permissions on the data content can be superimposed on the folder, module, and linking
models. Adjustments to both models can be made, based on the project’s priorities.

 Note that the DOORS permissions do not distinguish between permission to create,
modify, and delete requirement data content with permissions to create, modify, and
delete information architecture elements, such as attributes and linksets. If the project has

Version 1.0 24 November 2014

assigned different people the responsibilities for requirements development from
requirements management, DOORS will still allow anyone who has create, modify, and
delete permissions in a module to modify both data content and architecture.

While there is no way that unauthorized information architecture changes can be prevented by
requirement developers, we do have a set of DXL scripts that can be periodically run against the
DOORS projects, folders, and modules to find any unauthorized or non-standard changes to the
architecture. Once the changes have been identified, the requirements management team can
follow through with the requirement developers to determine the following:

 Why the changes were made

 Potentially incorporate those changes throughout the information architecture to meet
users’ needs (going through the information architecture change management process)

 Explain why the changes would cause harm to the project information architecture and
then correct those changes.

Figure 9 illustrates a security model for a small project using the DOORS permissions (Read,
Modify, Create, Delete, and Administer) and Sandia’s metagroups. Note that the security
controls are inherited from the top project; therefore, a metagroup must be listed with at least
Read permissions in the top project. The inheritance can be broken, as illustrated with the
different permissions and metagroups in the _Admin folder from the ABC Project.

This model also identifies the DOORS user types, which is assigned to each user by the tool
administrator. Typically requirement developers are Standard Users; information architects are
Project Managers; and tool administrators are Database Managers.

Version 1.0 25 November 2014

_Admin Folder

 ABC Project
R wg-doors-abc-sys
R wg-doors-abc-cmpnt
R wg-doors-abc-sbcmpnt
RMCDA wg-doors-abc-rm-adm
RMCD wg-doors-abc-rm-tm

RMCDA wg-doors-abc-rm-adm
RMCD wg-doors-abc-rm-tm

_LinkModules Folder
Inherits from parent

satisfies Link Module
RMC wg-doors-abc-sys
RMC wg-doors-abc-cmpnt
RMC wg-doors-abc-sbcmpnt
RMCDA wg-doors-abc-rm-adm
RMCD wg-doors-abc-rm-tm

Requirements Folder

R wg-doors-abc-sys
R wg-doors-abc-cmpnt
R wg-doors-abc-sbcmpnt
RMCDA wg-doors-abc-rm-adm
RMCD wg-doors-abc-rm-tm

1_System Folder

RMCD wg-doors-abc-sys
R wg-doors-abc-cmpnt
R wg-doors-abc-sbcmpnt
RMCDA wg-doors-abc-rm-adm
RMCD wg-doors-abc-rm-tm

2_Component Folder

R wg-doors-abc-sys
RMCD wg-doors-abc-cmpnt
R wg-doors-abc-sbcmpnt
RMCDA wg-doors-abc-rm-adm
RMCD wg-doors-abc-rm-tm

LEGEND

Project

Representative Link Module

Folder/Project

Black text – Standard User DOORS user type
Teal text – Project Manager DOORS user type

Subfolders and modules that “Inherit from
Parent” are not shown in this diagram.

R Read
M Modify
C Create
D Delete
A Admin

Figure 9: Example Security Model

Version 1.0 26 November 2014

2.3.2. Security Model Rules and Assumptions

The security model is based on established rules and assumptions, as illustrated in Table 4. You
can draw from the example security rules and assumptions listed below or create your own,
which will provide guidance for applying security controls when DOORS projects, folders, and
modules are created.

Table 4: Security Model Rules and Assumptions

ID Security Model Rule Rationale
1. Metagroup memberships shall be reviewed by

the Requirements Management Team every
three months or in response to an event like a
project reorganization.

Best practice for monitoring access to DOORS
data.

2. Metagroups and not individuals shall be used
unless there is a compelling reason to do so.

Reduced administrative burden over the life of
the project.

3. An individual may belong to any number of
metagroups.

Supports a person playing multiple roles in the
project with different access control needs.

4. Metagroup membership shall consist of one or
more individuals and/or sub metagroups.

Reduced administrative burden over the life of
the project.

5. Personnel will be granted access to data by
either adding them as individual members in
metagroups or preferably by adding one or more
sub metagroups, rather than changing access
controls on DOORS projects, folders, or
modules.

Best practice for reducing administrative
burdens.

6. Security controls shall be applied at the folder
level unless there is a compelling reason to
apply controls at the module level.

Reduced administrative burden while
adequately managing risk.

7. One or more metagroups shall be applied to
each folder (or module) with the same or
different access rights.

Reduced administrative burden while
adequately managing risk.

8. Access controls for all children folders and
modules shall be inherited from the parent
folder unless there is a compelling reason to
break the inheritance.

Reduced administrative burden while
adequately managing risk.

2.3.3. Sandia Metagroups

Groups within DOORS are either DOORS-defined groups, which means they are created and
maintained within the DOORS tool, or they are server-defined groups which means they are
created on the server and used within DOORS. Privileges to create and maintain
DOORS-defined groups is tightly controlled because of the security impact groups have within
DOORS. At Sandia, only the DOORS system administrators have the privileges to create and
maintain DOORS-defined groups.

Version 1.0 27 November 2014

We use Sandia’s Metagroup Utility for creating and maintaining groups on computers on the
Sandia Restricted Network (SRN) and Sandia Classified Network (SCN). The Sandia Metagroup
Utility can be used in combination with the server-defined groups within DOORS to define and
maintain DOORS access control groups for a DOORS project. This eases the burden on the
DOORS Database Managers because they do not have to manage the groups for a DOORS
project other than adding a metagroup name to the list of groups. The burden of defining and
maintaining the Metagroups lies with the project.

2.4.4. DOORS Group for External Users

If non-Sandians need access to an SCN DOORS project, a DOORS-defined group is needed that
includes the names of non-Sandians that use the DOORS Web tool to access the Sandia DOORS
via the Enterprise Secure Network (ESN.) Because of the way the ESN provides access to non-
Sandians, there is a username mismatch between what DOORS understands for the user and
what ESN provides. The Metagroup Utility uses the username specified by ESN which is not
recognized by DOORS; thus, we have to enter the username understood by DOORS within a
DOORS group.

2.3.5. Logical Metagroups on SCN

If a project requires dual access controls, such as Sigma 15 and DOORS access, then Logical
Metagroups on the SCN should be used to ensure that all users who have access to a specific
DOORS project are members of both subgroups. In the Sigma 15 example, the first subgroup is
wg-sigma-15; the second subgroup is the project-specific metagroup containing all of the
DOORS members. A super metagroup, consisting of the two subgroups, controls access to
DOORS projects, folders, and modules. Figure 10 illustrates this concept.

Logical metagroups are not used on the SRN.

<Project>

<name> Folder
Super Metagroup

(wg-doors-xyz)

1st Sub Metagroup

(wg-doors-15xyz)

Metagroup Members:
Person A
Person B
Person C

2nd Sub Metagroup

(wg-sigma-15)
AND

Figure 10: Logical Metagroup Model with Examples

Version 1.0 28 November 2014

2.4.6. Metagroup Naming Standards

The metagroup naming standards have been created to support a well-defined access control
process. The following guidelines should be applied when defining the metagroup naming
standards:

 For ID abbreviations, use a combination of standard abbreviations, vowel omission, or
word truncation. See Table 5 for standard abbreviations.

 Avoid organizational numbers or names that could change often.

 Keep metagroup IDs consistent for SRN and SCN, if needed.

Table 5: Standard Abbreviations

Term Abbreviation

Admin adm

Auxiliary aux

Component cmpt

Owner ownr

Requirement(s) req

Requirements Management rm

System(s) sys

Team tm

User(s) usr

To aid in the administration of DOORS projects, the prefix for both SRN and SCN metagroups is
wg-doors-<project name>-. The prefix should be short enough to leave room for the group
name. The maximum amount of characters for a metagroup name is 25.

 the Metagroup Utility has a mandatory prefix of wg-

 the DOORS tool administrators for the CEE SRN DOORS require doors- to follow the
mandatory wg-

 the project name in the name associates all the metagroups with a particular project and is
useful in searching in the Metagroup Utility

Table 6 lists example metagroups and a model for folder structure metagroups. It also shows the
Sigma 15 sub metagroup name, if needed.

Version 1.0 29 November 2014

Table 6: Example Metagroup Descriptions and IDs

Member
Group Description Metagroup ID

Prefix: wg-doors-<project>-
Super Metagroup
ID

Sub Metagroup
ID

DOORS
Database
information
architecture
team members

Team members who design and implement
the database information architecture and
supporting software code and have DOORS
administrative privileges.

rm-adm 15rmadm

Requirements
Management
Team

Members of the requirements management
team who manage requirement content.

rm-tm 15rmtm

Readers Personnel who need to see the requirements
information but do not edit or link
requirement content.

read 15read

Editors Personnel who edit requirement content
and/or link requirements.

edit 15edit

Qualifiers Personnel who record and/or link
information about requirements and
qualification.

qualify 15qualify

Verifiers Personnel who record and/or link
information about requirements and
verification.

verf 15verf

Systems Personnel who perform work at the systems
level, create and edit requirements, and link.

sys 15sys

Components Personnel who perform work at the
component level, create and edit
requirements, and link.

cmpt 15cmpt

Subcomponents Personnel who perform work at the sub-
component level, create and edit
requirements, and link.

sbcmpt 15sbcmpt

2.4. Options for Relating Information in DOORS

There are several ways to configure and relate information in DOORS. Table 7 lists those
options and describes the differences. A data modeling methodology, such as ORM described on
page 9, and concrete examples will aid the architect in determining what information are
attributes or objects.

Version 1.0 30 November 2014

Table 7: Options for Relating Information in DOORS

Options Description Examples
Projects and
folders organize
modules in a
hierarchical
structure

 Containers of information
 Listed in alphabetical order by default
 Minimize the number of folders for ease of

use
 Folders contain between 3 and 20 modules

in keeping with good classification
standards

 Labels are kept short to minimize the
length of the path name

 Modules allow one editor at any one time
 Trace from modules in one level up to the

next level’s modules

2_Level

Rqmts

3_Level

1_Level

Heading and
Subheading
Objects organizes
the data content

 Organizes the data content, similar to how
you would organize information in any
document

 While headings are automatically
numbered in DOORS, headings are also
objects that are uniquely identified

 May be described by attributes

Text Objects can
“stand alone”

 Contains the main piece of information,
such as the requirement statement

 Objects are uniquely identifiable
 Text Objects can “stand alone,” but can

also be described by attributes
 Objects can be linked to other objects and

used for traceability using one or more link
modules

The DocReference module contains
a list of Document Titles as Text
Objects. It is described by location,
issue, author attributes, which can
be used for filtering and sorting.

Attributes describe
Text Objects

 Describes objects and/or modules
 Cannot stand alone, as Text Objects can
 Various data types, such as text, Boolean,

dates, and enumerated lists
 Used for filtering and sorting Text and

Heading Objects
 Module attributes record report front and

back matter for reports or other module-
related information

 Attributes cannot be linked to other
attributes

 Attributes cannot be described by other
attributes

The DocReference attribute
describes a Requirement Text
Object. The attribute is a Text Base
Type and contains a unique
identifier from the document
repository. It is used for reference
and also for filtering. There is no
linking.

Version 1.0 31 November 2014

Links relate two
Objects using a
Link Module

 Links relate two Objects, preferably Text
Objects

 The Link Module defines the relationship
 The Link Module is stated as a verb, such

as Rqmt 1 satisfies Rqmt 2.
 The Linkset describes the allowable

relationships between the Source Module
and Target Module using a Link Module

 Links can be filtered
 Attributes can describe the relationship,

but it is a little difficult to enter the data

A requirement text object links to a
DocReference text object, and it is
possible to filter on the links.

2.5. Custom Attributes and Types for Requirements

While DOORS has the standard set of attributes for any Text or Heading Object, the ReqMAPS
team has defined a set of standard custom DOORS attributes and enumerated data types that we
recommend for every project, described in Table 8. It is possible that some of these attributes
may not apply to your project, and the values may need to be tailored.

The ReqMAPS team has developed naming conventions for custom attributes (as well as
projects, folders, files, views, etc.) that are specified in the DOORS Naming Standards document
on Sandia’s DOORS SharePoint site at
https://sharepoint.sandia.gov/sites/DOORS/SitePages/Home.aspx?RootFolder=%2Fsites%2FDOORS%2
FDOORS%20User%20Documentation%2FHow%20To%27s.

Table 8: Standard Custom Attributes and Types for Requirement Objects

Current Template
Attributes

Attribute
Scope Description Type Name or

Enumerated Data Type

att.Comments Object Used for keeping comments about objects. Text

att.Explanation Object Used to record additional explanatory text
that is not stated in the requirement

Text

att.NonReqType Object Specifies the type of non-requirement
object. Used for filtering.

shr.enum.NonReqTypes
Values: Goal, Assertion, Definition,
Heading

att.ObjState Object This is an artifact of an older version of the
architecture, and is used in numerous DXL
scripts. Can also use it to mark Objects as
deleted instead of using the DOORS delete
function.

shr.enum.ObjStates
Values: Active, Deleted
Default Value: Active

cre.ObjType Object Delineates what type of function the object
plays within the module. Used for
filtering. Utility is used for DXL attributes.

shr.enum.ObjTypes
Values: Req, Non-req, Utility

https://sharepoint.sandia.gov/sites/DOORS/SitePages/Home.aspx?RootFolder=%2Fsites%2FDOORS%2FDOORS%20User%20Documentation%2FHow%20To%27s
https://sharepoint.sandia.gov/sites/DOORS/SitePages/Home.aspx?RootFolder=%2Fsites%2FDOORS%2FDOORS%20User%20Documentation%2FHow%20To%27s
https://sharepoint.sandia.gov/sites/DOORS/SitePages/Home.aspx?RootFolder=%2Fsites%2FDOORS%2FDOORS%20User%20Documentation%2FHow%20To%27s
https://sharepoint.sandia.gov/sites/DOORS/SitePages/Home.aspx?RootFolder=%2Fsites%2FDOORS%2FDOORS%20User%20Documentation%2FHow%20To%27s

Version 1.0 32 November 2014

att.ReqType Object Specifies the category or topic of the
requirement.

shr.enum.ReqTypes
Values: Functional, Non-Functional,
Performance, Interface, Design
Constraint, Programmatic, N/A

att.Rationale Object Describes the reason why the requirement
is needed. Rationale is helpful because it
provides background on the succinct
requirements statement. May include
interpretation of the requirement.

Text

cre.RPEStyle Object MS Word paragraph style used by RPE shr.enum.RPEStyles
Values: All of the Word Styles
needed to support your MS Word
templates
Default Value: Body

att.VerifMethod Object Specifies the methods by which a
requirement will be verified.

shr.enum.VerifMethods
Values: Analysis, Test,
Demonstration, Inspection,
Similarity, Mod & Sim, Analogy

In addition to the standard custom attributes and types listed above, the ReqMAPS team has used
numerous other attributes to describe the requirement objects, which support filtering, sorting,
and generating RPE and/or DXL reports. Attributes also have been defined at the module level
for descriptive and reporting purposes. The following attributes are listed in Table 9 for your
information and consideration in your specific project. In addition to the listed attributes, there
may be other attributes that you need to support your project’s needs.

Table 9: Other Custom Attributes and Types for Requirement Objects

Custom Attributes Scope Description Type Name or
Enumerated Data Type

att.Achievable Object Specifies if the requirement can be met (is
achievable) or not.

cmn.enum.YesNoUnknown
Values: Yes, No, Unknown

att.Allocation Object This is the LevelN items to which a
LevelN-1 requirement can be allocated.

typ.enum.Allocations
Values: <applicable allocatable
items in your Project>

att.Color4DXLcol Object This attribute is used in a column’s property
as the “Text Color By attribute” attribute. It
is used to set DXL attribute columns to a
color to differentiate them from regular
attribute columns. This attribute is used
only by those who create views.

cmn.enum.YesNo
Values: Yes, No

att.Footnote Object Specifies a footnote for the associated
object. When generated in a document this
attribute will appear as a footnote. The DXL
script or RPE template is designed to
support this.

Text

Version 1.0 33 November 2014

att.PortionMarking Object Specifies the classification of an object.
This may be required by some customers.

shr.enum.PortionMarking
Values: <Project specific values>

att.ResponsibleAgency Object Specifies the external agency responsible
for the object.

shr.enum.ExtAgencies
Values: <Project specific values>

att.Stability Object Defines the stability of the requirement.
High means the requirement is stable or
complete. Medium means the requirement
is close, but there are parameters or values
in the requirement that could change or the
requirement still needs to pass some
reviews. Low means the requirement is
unstable; it still needs work, or it may not
even be kept as a requirement.

cmn.enum.HighMedLow
Values: High, Medium, Low

att.SyncID Object Used in the module synchronization process
that merges data between two modules.
Usually used to upload modules from the
SRN to the SCN.
This is set to the absolute number of an
object in a module to be merged into
another module. It is used to determine
what objects to compare for a merge. The
absolute numbers of the objects between
two modules being synched may not be the
same, so this is used.

Integer

att.Verifiable Object Used to specify if the requirement is
verifiable or not. Used for inspections or
reviews.

cmn.enum.YesNo
Values: Yes, No

dxl.Export2WordLine Object Displays the mdl.Export2WordLine
attribute if the object is marked as a
requirement. (ObjType = Req)
This is for views that will be exported to
Word using the basic DOORS Word export.
The line is used to provide a clear visual
distinction between requirements in the
Word document.

DXL attribute

dxl.ReportDisplay Object Displays the report information for the
module, pulling all of the rpt.<> attributes
and displaying them in the "Report
information" object. Only runs on the object
with Report information in the Object Text
and Utility in the cre.ObjType.

DXL attribute

dxl.ReqID Object Displays the object ID for objects marked
as requirements. Also zero fills the object
ID.

DXL attribute

mdl.ProjName Module Specifies with what project the module is
associated. Used in reporting and metrics.

Text

mdl.WordDocNameInf
o

Module Captures the information that was in the
name of the imported MS Word document
that is not going to be kept in the name of
the DOORS module. This is for historical
reference.

Text

Version 1.0 34 November 2014

mdl.Export2WordLine Module The value is a line that is long enough to
provide separation between two
requirements in an exported Word
document. This is used in conjunction with
the dxl.Export2WordLine attribute.

Text

rpt.AuthorList Module Specifies the authors of the module. Format
to be used is:
<Author Name 1>:<Author 1
Department>;<Author Name 2>:<Author 2
Dept> … etc.

Text or String1

rpt.ClassCategory Module Specifies the unclassified classification
category for the module. ECI - Allows any
of the four sub categories (ITAR, EAR,
DOE, NRC).

Text or String

rpt.ClassExempt Module Specifies the unclassified exemptions for
the module. 3 - Allows CRADA or ECI
Categories.

Text or String

rpt.Classification Module Specifies the full classification for the
module. Includes the full classification of
the module.
Generates a classification block on the
cover page middle bottom.
Empty when Unclassified.

Text or String

rpt.ClassLevel Module Specifies the classification level for the
module.

Text or String

rpt.ClassSubCat Module Specifies the sub-category classification for
the module.

Text or String

rpt.ClassUnClass Module Specifies the unclassified classifications.
UCNI (Unclassified Controlled Nuclear
Information), or OUO (Official Use Only).

Text or String

2.6. Custom Views for Requirements

A set of standard views are created and managed by the architects for requirements modules,
based on the needs of the project. These views are standard to all requirement modules, which
provide consistency for standard users in editing or viewing data across requirements modules.
Therefore all modules that store requirement or design objects include these standard views.

The ReqMAPS team has developed naming conventions for views that are specified in the
DOORS Naming Standards document on Sandia’s DOORS SharePoint site at
https://sharepoint.sandia.gov/sites/DOORS/SitePages/Home.aspx?RootFolder=%2Fsites%2FDOORS%2
FDOORS%20User%20Documentation%2FHow%20To%27s.

1 All the attributes that have an rpt prefix are denoted as having either a Text or String data type. Text is the newer
data type, and when it was introduced into DOORS, it was to replace the string data type. DOORS has kept the
string data type for backwards compatibility, but in general, the string data type should not be used. The rpt-prefixed
attributes originally were created to be used with the DXL CD export tool. That tool expects the rpt-prefixed
attributes to be of type string. So if you are using these attributes with the CD export tool, then their data type should
be string; otherwise, you should use the more up-to-date data type of text.

https://sharepoint.sandia.gov/sites/DOORS/SitePages/Home.aspx?RootFolder=%2Fsites%2FDOORS%2FDOORS%20User%20Documentation%2FHow%20To%27s
https://sharepoint.sandia.gov/sites/DOORS/SitePages/Home.aspx?RootFolder=%2Fsites%2FDOORS%2FDOORS%20User%20Documentation%2FHow%20To%27s

Version 1.0 35 November 2014

Views may be public or private. Public views are available for any user who has access to a
module. Private views are not available for any user and are usually created by an individual for
the individual’s own use. A user can create private views that are either temporary or permanent
in nature. However, any changes to attributes and types could adversely impact these private
views, and these private views cannot be seen or modified by the architects.

An example set of standard public views is shown in Table 10. DXL attributes are highlighted in
bold text. The views are stored in the template module and then pushed out to all requirement
modules. View permissions are Inherit from Parent so that the architects have full permissions
(typically RMCDA) and users have Read permissions.

Table 10: Example Standard Public Views for Users

View Name Description List of Attributes Constraints for View

v.1_DataEntry View for main data entry by
users.

ID
Requirement Text
Explanatory Text
Rationale
Object Type
Requirement Type
Non-Requirement Type
RPE Style
Verification Method
Comments

None

v.2_RPE View for formatting the objects
for generating RPE reports.

ID
Requirement Text
Object Type
RPE Style

None

v.3_PreExportReview View to show module report
attributes used to enter data for
the cover page of the exported
document. Also includes all
attributes that are exported.
Implemented on SRN and SCN.

ID
Requirement ID
Requirement Text
Object Type
Object State
Rationale
Report Cover Page Information

For Report Cover Page Info to
be shown, first object has
"Report information" as
Object text, Object Type as
Utility

For Req ID to be shown,
Object Type = Req

v.4_Links-All View to show all in and out links
for the module (one level).

ID
Requirement Text
Object Type
Comments
In-links at depth 1
Out-links at depth 1

None

v.5_Links-Satisfies View to show all in and out
"satisfies" links (one level).

ID
Requirement Text
Object Type
Comments
"satisfies" In-links at depth 1
"satisfies"Out-links at depth 1

Satisfies link module is set up
and DXL attribute is limited
to links through that module
(if it changes in the future the
view will not display the
links)

2.7. Reporting and Exporting Data

Version 1.0 36 November 2014

2.7.1. Reporting Options

There are several options for generating reports in DOORS. Reports include requirement
documents, traceability reports, and metrics on DOORS data. Reports can be generated from a
subset of information (filtered and sorted data), as well as from multiple modules. Identifying the
type of reporting needed or desired at the beginning of the project is recommended as it can
affect the information architecture and format of the data in DOORS.

While the DOORS built-in reporting capabilities are appropriate for quickly exporting the data
into a draft or sharable format, and the CD Export script is appropriate for engineering
specification reports, we recommend using Rational Publishing Engine (RPE) for generating
other reports as it lends the most flexibility.

There are three major ways to produce a report, as shown in Table 11.

Table 11: Options for Producing Reports

Option Description
DOORS File, Print and File, Export options Quick and easy. Built-in reporting capabilities are

limited to simple reports or spreadsheets.

Custom Scripts Written using the DXL language. For example, the
CD Export script, available to NW organizations, is
a highly customized DXL script for generating
engineering specification template reports. It’s very
powerful, yet limited to the specification template
format.

Rational Publishing Engine (RPE) A highly customizable report generator.

2.7.2. Report Formatting and Information Architecture

The main impacts to the information architecture and format are listed below.

1. When using the DOORS internal capability, and to some extent custom scripts, the data that
is in the DOORS object is sent to the MS Word document in the DOORS-specified format,
such as indented paragraphs. This may be desirable or it may create erroneous output because
some formatting features are defined differently in DOORS than in MS Word. Examples are
tabs and bullets. In addition, text objects can contain Rich Text Formatting (RTF) that is not
compatible with MS Word.

2. RPE can also take the data in the DOORS object and send to MS Word as formatted, or it can
use the value in an enumerated attribute (att.RPEStyle) to define the format in MS Word. The
values in the att.RPEStyle attribute correspond to the MS Word template paragraph styles. In
this case, DOORS objects are not formatted, allowing RPE to instruct MS Word to do the
formatting as specified in the att.RPEStyle attribute value. This allows for more sophisticated
formatting than DOORS offers and quick formatting changes. Table 12 lists the reporting
options, how they affect the architecture, and the pros and cons of each.

Version 1.0 37 November 2014

Table 12: Reporting Options and the Effects on the Information Architecture

Option Description
DOORS Internal
Capabilities: DOORS
File, Print and File,
Export options

 Limited flexibility in formatting.
 Some formatting options are dependent on the associated MS Word

template.
 If importing requirements from MS Word documents, MS Word formatting

does not need to be stripped out.
 May need a view defined to extract needed data.
 Other customizations, such as what is available in RPE and DXL, are not

available.
 Quick and easy to run reports.

Custom DXL Scripts A custom DXL script can be written to meet specific reporting needs.
 Allows for flexibility in formatting.
 Some formatting options are dependent on the associated MS Word

template.
 If importing requirements from MS Word documents, MS Word formatting

may not need to be stripped out.
 The DXL script may rely on a specific DOORS information architecture to

work properly, including attributes and views.
 Highly customizable.
 It is possible that the DXL script can be used for multiple projects if the

script was designed for re-use. If the script was not designed for re-use,
multiple versions of the same script would have to be created, making it
more difficult to manage the versions.

 Requires programming expertise, testing, and going through the release
process for approved users to generate the reports.

 Generally speaking, changes are time consuming to make.
Rational Publishing
Engine (RPE)

 RPE is capable of almost any kind of report in MS Word, including
sophisticated formatting, bringing requirements data together from multiple
modules, and including linked data.

 Allows for extensive flexibility in formatting, including the reporting on
linked data.

 Some formatting options are dependent on the associated MS Word
template.

 If importing requirements from MS Word documents, MS Word formatting
needs to be stripped out so that it doesn’t interfere with the RPE formatting
if RPE generator relies on a specific enumerated attribute that specifies the
MS Word styles. (Note that a DOORS requirement object can only support
one MS Word Style. Therefore, if there is a requirement introductory
statement with four bulleted paragraphs in one requirement object, DOORS
can only assign one Style for all the text.)

Version 1.0 39 November 2014

3. KEY INFORMATION ARCHITECTURAL CONCEPTS

3.1. Defining the DOORS Requirements Management Project

3.1.1. DOORS Project Roles and Responsibilities

Requirements Engineering has two main areas: 1) Requirements Development, where domain
experts specify and link the requirement data content, and 2) Requirements Management, which
deals with designing and implementing an information architecture to control change to the data
content, as well as specifying the supporting processes. This document focuses on Requirements
Management, and Table 13 lists the major topics.

Table 13: Requirements Management Topics

Architecture Processes DOORS Implementation
 Information Modeling
 Security Modeling
 Database Design
 Reporting Design
 Requirements Traceability to

Qualification and V&V
 Architecture evaluation and

improvements throughout
life cycle

 Requirement business rules
 Configuration management
 Importing and archiving data
 Reporting
 Artifacts/Document

management
 Process integration,

performance assessment,
and improvement

 Architecture
 Processes
 Standards and best practices
 Mentoring and training
 Collaboration with DOORS

enterprise software team
 Scripting
 Support for Requirements

Development

The expertise and skills, embodied in software engineers, for accomplishing requirements
management is very different from what is required for requirements development by the domain
experts. For a successful project, both need to work closely to achieve success. The software
engineering skills required should not be underestimated by the system and quality engineers
who are specifying the requirements, and the software engineering staff should not assume they
have adequate domain knowledge to design the information architecture on their own.

3.1.2. Centralized versus Decentralized Approaches

There are two general approaches for organizing the project team for developing and managing
requirements in DOORS.

3.1.2.1 Centralized Approach

The first is a centralized approach, where a very small number of people enter or import data,
make edits, and generate the reports, as well as define and implement the architecture, supporting
processes, and custom DXL scripts.

The advantages to this approach are that unauthorized changes to the information architecture are
easily preventable, the security model is uncomplicated and straightforward, fewer people need
to be trained to use DOORS, and requirements are formatted consistently. However, this

Version 1.0 40 November 2014

approach can also be a bottleneck when a quick turnaround is required to meet a deadline or
when DOORS experts are unavailable.

As the domain experts are probably unfamiliar with using the DOORS tool to its full potential,
they most likely create the requirements in MS Word or Excel for later import into DOORS.
Word and Excel allows great flexibility in formatting the information, and usually authors take
advantage of that flexibility. However, that sophisticated formatting does not always import into
DOORS the way you would expect it to so that you can generate reports to achieve the original
MS Word formatting. Because MS Word allows flexibility in formatting, and that formatting can
imply relationships amongst the information, the MS Word structure cannot always directly
translate to a DOORS information architecture. The implied formatting in MS Word may not be
understood by the non-domain experts when they import the requirements into DOORS. In
addition, DOORS has limited formatting options compared to MS Word.

3.1.2.2 Decentralized Approach

The second approach is decentralized, where a large number of people playing various
requirement development roles in the project create or import data, make edits, link
requirements, and generate the reports. There are also staff members who define, implement, and
manage the information architecture.

The advantage to this approach is that the domain experts who specify the requirements are
doing the editing and generating reports, making for a more efficient approach, especially when a
deadline approaches. However, this approach requires more end user training and effective
communication, and potentially leadership oversight, to ensure that everyone is adhering to the
implemented architecture, as well as following the established business rules and processes. If
domain experts do not respect the established information architecture and processes, the
information architecture will soon become a quagmire of duplicate attributes, long lists of views,
and unspecified linking.

3.1.3. Requirements Management Project Scope

Because DOORS is a requirements management tool, it might seem obvious that the tool is
designed to manage requirements data. However, DOORS is first and foremost a database, and
you can manage any structured data in DOORS; not just requirements data. Test results, test plan
documents, roles and responsibilities, business rules, records of decision for changing
requirements, files, and other information can all be managed in DOORS.

The larger the project, the greater the potential that DOORS is just one of many tools used by a
project team; and the capabilities of several tools may overlap. Looking at the full suite of tools
to manage data for your project, the main scoping questions to consider are listed below.

 What information is appropriate to manage in DOORS versus another tool?

 What is the impact to the project if some information is not managed in DOORS?

 What set of information can reliably be kept up to date in DOORS so that it is usable
information?

Version 1.0 41 November 2014

 Are adequate funding and the right type of personnel resources available throughout the
project lifecycle to support and maintain the information?

3.1.4. Tool Functionality

While most tools have numerous functionality areas, selecting a tool that affords significant
flexibility in designing the optimal information architecture for a specific project is critical for
managing and utilizing the data throughout the project’s life. Managing requirements for a full-
blown requirements management effort demands a well-designed information architecture
supported by a tool that allows flexibility in designing that architecture, as it does for a project
with limited requirements management needs.

Our experience with any requirements management information architecture in an automated
tool is that once people start using the capability and seeing its potential, people will demand
more functionality. The information architecture must be able to support this without a major
redesign. Thus, our recommendation is to design an information architecture that will meet the
needs of the project at the beginning of the project as well as for the anticipated needs throughout
the life of the project. The design can be implemented in stages as the project matures. An
example would be to implement the satisfies trace and plan for the verifies trace.

3.1.5. Integration with Data in Other Tools

Often DOORS data needs to integrate with data captured in other tools, such as IBM Rhapsody
for model based systems engineering or National Instruments LabView and Test Stand for
testing activities. The DOORS architecture, as well as supporting processes, may need to be
designed to potentially accommodate integrating with data captured in other tools or repositories.

Generally speaking, it is desirable to store the information closest to where it was created. For
example, store requirements data in DOORS; test data and results in LabView. However, an
integration point needs to be defined as LabView may need to import requirements from
DOORS, and DOORS reports may need the final pass/fail test results from LabView for
reporting. Understanding the entire tool suite, the process to import or export information
including updates, and the integration points will help determine what data should be captured
and managed in DOORS.

3.1.6. Resources to Support the Project Scope

While it might be considered a “good idea” to manage an extensive set of requirements and
descriptive information in DOORS, the technical and administrative burden of managing that
information throughout the project life requires adequate funding and available personnel with
the right skill sets. The DOORS architect can design an information architecture with an
extensive set of requirements and descriptive information, but only implement a subset of the
information architecture to meet the project’s current needs. This is where the architect’s years of
experience with a wide range of projects can provide invaluable guidance to the project’s
management.

Version 1.0 42 November 2014

Resources will affect the project scope as all DOORS information needs to be managed now and
throughout the life of the project to instill confidence in those using the data to make decisions. If
a full-blown set of requirements information can’t be managed adequately by people with the
right skill sets, then pare it down to a smaller set of high-value requirements information that can
be managed well in DOORS.

Here is a list of technical resources needed for requirements engineering using DOORS:

 Domain expertise for developing and linking requirements for traceability

 Requirements development technical writing skills for ensuring requirements are well
written

 Database design expertise for creating a sound information architecture

 Tool expertise for maintaining and managing the information architecture and the data

 Configuration management expertise for developing and implementing processes such as
releasing reports, baselining, archiving, requirement change management, and version
control for DXL scripts

 RPE programming and reporting skills

 DXL programming skills

 System and tool administration, performed by the Lifecycle Management Solutions
Organization, currently Org. 9512, for the CEE DOORS installation

3.2 Interacting with the DOORS Data

The data you need to pull out of DOORS, such as requirement documents and traceability
reports, will help determine what information you store in DOORS and how the information is
related. How people will interact with and manipulate the data will determine how to structure
the information in folders and modules, as well as how to describe and view the data.

3.2.1. Creating Requirements

The ideal way for data to be entered into DOORS is to directly create the requirements and
related information in the DOORS modules, which are created from a template containing the
standard attributes, types, and views. The template may also contain standard headings and
subheadings to organize the data in modules.

It is important to establish a set of business rules for creating requirements and associated data.
Business rules establish standards for consistency in developing, linking, and exporting the
requirement information.

Version 1.0 43 November 2014

Examples of business rules are listed below in Table 14. These rules or standards are supported
by the information architecture and are dependent on your project needs.

Table 14 Example Business Rules

Example Business Rules Rationale
1. A single requirement statement is entered in

each object. Additional explanatory text is
stored in an attribute, not a separate
requirement object or a separate paragraph in
the requirement object.

This supports linking only the requirement
statement for traceability, while preserving
valuable additional information that is not part of
the requirement statement.

2. A bulleted list of multiple requirements is split
into multiple individual requirement objects.

This supports linking requirements for traceability
as well as verification.

3. Rationale statements are recorded in the
Rationale attribute, not in the requirement
statement

This supports linking only the requirement
statement for traceability, ensuring that the
rationale statement does not contain the
requirement.

4. When a table is used to display multiple
requirements, the table is in addition to the
individual requirement objects. A table of
requirements is secondary to a list of
requirement objects. The individual
requirement objects are linked; requirements
are not linked to the entire table or through the
table.

A table of requirements is a better visual for
reading and quickly understanding multiple
requirements, but the individual requirement
statements separate from the table are needed. The
reason is requirements in a table can be
misinterpreted or be incomplete as the column or
row headings are missing in a trace. This is a
general requirements engineering business rule
regardless of the tool.

5. Diagrams and tables are stored in a file
repository that is version controlled and then
imported as OLE objects in DOORS. When the
file is updated, the new version is stored in the
repository and re-imported into DOORS.

This is sound configuration management and
allows for multiple uses of the same diagrams and
tables.

6. DOORS Shareable Edit capability will not be
used in a module.

Shareable edits cause additional maintenance
issues.

If the requirements have already been created in an MS Word or Excel file, that information can
be imported into DOORS. The importing process can be tedious and time consuming, depending
on how the requirement text is entered and formatted in Word. If the author consistently adheres
to a Word or Excel template structure, and that structure maps to the DOORS architecture, the
importing process is not prone to errors.

If the project team has a history of managing requirements in MS Word, which is semi-structured
text, and then transitions to structured text in a DOORS database, team members can feel unduly
restricted in how they format requirements. In this situation, using an MS Word template for
formatting and organizing requirements, along with the defined business rules, will aid the
authors in developing requirements that are easy to import into DOORS.

Version 1.0 44 November 2014

3.2.2. Updating, Viewing, and Linking Requirements

It is important to understand how your project team wants to work with DOORS data in different
situations, such as design reviews, Fagan inspections, or updating information. The various roles,
including engineers, quality staff, technical writers, or managers, will interact with DOORS
differently. Several standard views can be created to support these various needs.

Filtering is a very powerful feature in DOORS, and you can filter on attributes, links, and
columns. Filters in views can display requirements that were modified since a specific date, have
text entered in the red-lined column, or that have no links. The DOORS redlining feature
preserves the original requirement text while changes are displayed in another column.

While the DOORS display options are not ideal for viewing and updating the information on a
large screen in a team setting, we recommend that you not export the DOORS data to an Excel or
Word document to view the information, make changes, and then re-enter or re-import those
changes back into DOORS at a later date. This process invites mistakes in data entry and the
possibility that conflicting changes are made to the same requirements in the duplicate versions
of the data. These same risks exist if you copy a module and make tentative changes to
requirements for later updating in the “real” module.

Once the requirements are fairly stable, meaning that few changes are made to the requirements,
linking requirements can begin. Linking is an excellent means for verifying requirements and
identifying gaps. A generalized linking model illustrates object relationships by displaying the
link, source, and target modules. It clarifies the information architecture for traceability so that
people understand what is allowable when making links.

A formal change management process at the requirement object level is needed for at least
medium- or large-sized projects when several staff members are linking requirements. This
process, hopefully automated, needs to be defined well in advance of the linking effort so that
everyone knows what to do when mistakes, inconsistencies, or gaps are discovered. If team
members do not follow the process and the security model allows people to make changes to any
requirement, chaos will follow and it will be extremely difficult to undo changes. If this situation
occurs, you may have to submit a ticket to the system administrators to retrieve old versions of
one or more modules so that linking can be redone.

3.2.3. Reporting

A good place to start understanding how to architect the data in DOORS is to specify the reports
that will be generated. Detailed mockup reports created in MS Word illustrate the content and
formatting requirements. Any MS Word or Excel templates used for generating reporting should
be identified and incorporated into the mockups.

The reporting capabilities built into DOORS are limited, even if you enhance the exporting with
DXL scripts. The reason is DOORS is a database tool and not a report generation tool. Thus, we
recommend using Rational Publishing Engine (RPE) for generating any reports from DOORS
beyond the very basic ones. RPE is a powerful, flexible report generation tool that allows for

Version 1.0 45 November 2014

producing high-quality documents. The RPE templates are reusable, they allow for quick
formatting changes, and they extract data from multiple sources.

The reporting method that will be used can affect how the data is input into the objects. RPE
controls formatting through the use of MS Word styles, whereas DXL scripts and the DOORS
internal printing tools have limited formatting capabilities. Typically, when users enter data into
DOORS objects, they tend to use the same formatting features, such as indenting and blank lines,
that are used in documents. For example:

Figure 11: Object Data With Formatting

Although this is more readable when viewing the data in DOORS, it can cause problems with
reporting as described on page 37. With RPE, the object text in DOORS does not have to be
formatted for paragraph styling; instead, an MS Word paragraph style is selected from a custom,
enumerated attribute. RPE sends that style to MS Word and, thus, MS Word does all the
formatting.

Figure 12: Object Data Without Formatting

This approach allows for more sophisticated reporting than DOORS and DXL scripts can offer.
In addition, formatting style changes are quick to make and RPE uses templates that can be used
against many modules.

Reports that may be generated from DOORS include the following:

Version 1.0 46 November 2014

 Formal reports for customers. If there are multiple customers with varying reporting
requirements on the same data, these differences will need to be accounted for in the
information architecture and/or in RPE.

 Internal verification, inspection, or review. These reports could be used by individuals
or in a team setting.

 Traceability. These reports support gap analysis and completeness reviews. The trace
reports can be one or multiple levels.

 Comparisons. Identifying changes in the current version with a baselined version.

 Metrics. Metric reports could include such things as identifying how many requirement
objects have changed since the last baseline or how many requirements have not yet been
linked.

3.3. Modeling the DOORS Information

3.3.1 Information Architecture Concepts

Communicating with DOORS users on how they use requirements information, such as for
filtering and sorting, and how they want to interact with the tool to accomplish various tasks will
help define the information architecture from data and usability perspectives. A DOORS project
will also need information to administer and manage the DOORS project, such as importing data,
as well as a playground area where people can learn DOORS functionalities. Diagrams, pictures,
and other graphics can be managed in a separate version control system, such as
TeamForgeSVN, and imported into the DOORS modules.

We document as much of the information architecture in DOORS modules as possible, either by
running scripts to populate the module, or by manual data entry. This information is augmented
by an information architecture document that is version controlled and contains diagrams for
illustrating concepts.

After designing the folder structure, all of the information architecture elements must eventually
be analyzed and tested as a whole. This includes how the information is segmented into modules,
the required traces, and the security model. If the information architecture is difficult to
document, explain to others, or requires some “trickery” to implement, then the information
architecture will be difficult to support over the life of the project and a redesign is highly
recommended.

3.3.2 Module Architecture Approaches

There are three main approaches to designing the modules in the information architecture.
Whatever approach you use, which could be a hybrid approach, the module structure is based on
a thorough analysis of the requirements information to be managed in DOORS, including any
existing requirements documents that will be imported. The composition of the project and the
existing data will determine what approach to take.

Version 1.0 47 November 2014

3.3.2.1. Data-Driven Architecture

In a data-driven architecture, the data use and access needs drive how the modules are set up for
managing the requirements. This is the ideal approach, as there are no existing constraints on
how you organize the information into modules, so you don’t have to make concessions on the
design. A data modeling methodology, such as ORM described on page 11, and concrete
examples will aid the architect in segmenting the information into modules that support creating
and editing requirements, tracing, and reporting.

The first step is to find commonalities amongst the information in order to create a folder
hierarchy for traceability. One example would be system, components, and subcomponents.
Another would be customer requirements, Sandia policies, Sandia processes. The next step is to
divide the common information into categories, which translates to individual modules. Then test
your structure to ensure that people can edit the modules without conflicts with other users and
that your tracing needs are met.

3.3.2.2. Document-Driven Architecture

In a document-driven architecture, there is a one-to-one mapping between a DOORS
requirement/design module and the document to be generated. The ideal situation is if the
document set is designed taking into account the DOORS linking model so that the traceability
needs can be easily met. This architecture also tends to be better for having multiple editors for
content and linking because a module can be opened for editing (Exclusive Edit2) by only one
person at any one time, and with this architecture only a subset of the requirements is usually
stored in any one module.

On the other hand, a drawback of this information architecture is that requirements are
distributed among several modules in DOORS which makes it difficult if engineers want to view
requirements from other modules or include those requirements in the report generated from the
original module. This architecture does not directly support that ability since copying
requirements from one module to another module is never recommended as it will create
conflicting, duplicate sets of requirements. We can use the RPE reporting tool to include
requirements from multiple modules into a single report. DXL also can be used to include
requirements from multiple modules into a single view, but a DXL solution can be more
complicated than an RPE solution and may impact performance within DOORS.

3.3.2.3. Level-Driven Architecture

In this model, all of the requirements that are in a particular level in the satisfies trace are stored
in a single module. A components module, for example, would contain all of the project’s
component requirements, which could be thousands of requirement objects. Views with filters
are created to display the requirements for export to generate each document report. Pictures,
tables, and diagrams are stored in a single module and linked to the requirements module. There
is a separate module for document front matter and another for document back matter.

2 DOORS does have a Shareable Edits feature that allows for multiple editors in a single module; however, as
indicated earlier in this document, this feature can cause maintenance issues, and we do not recommend it.

Version 1.0 48 November 2014

This information architecture works best for smaller projects, where there is a small number of
requirements and only one or two people editing and linking requirements. Because a diagram is
potentially used in more than one document, it is unnecessary to store multiple copies of the
diagram in the modules. Instead, a link is made from an object in the requirements module to an
object in the diagrams module.

The linking model may be more complex than in a document-driven architecture. Linking within
a single module is technically possible, but discouraged because of the complexity; therefore, the
linking model needs to be designed carefully to ensure that all traceability needed is technically
feasible in DOORS before the information architecture is implemented. Views with filters are
thoroughly tested, and checks are made on all of the attribute values to ensure that the correct set
of data is displayed for a complete and accurate export to a document.

3.3.3. SCN vs. SRN DOORS

If a portion of a project’s requirement information is classified and traceability reports will be
generated, then we recommend that all of the requirement information be stored on the Sandia
Classified Network (SCN). Linking requirements between the Sandia Restricted Network (SRN)
and the SCN is not technically feasible. In addition, managing the requirements in two databases
on two networks can be overly complicated, time consuming, and error prone. Most importantly
of all, the aggregation of requirements information on the SRN could result in a security incident
by producing classified information. If an unclassified report is generated from SCN DOORS, it
can be transferred to the SRN using Sandia’s downshifting process. If it is decided that
requirements information will be kept on both the SRN and SCN, then a DOORS
synchronization process is available to sync DOORS information between the two repositories.

If both the SCN and SRN DOORS are used to store separate sets of requirements that are not
linked between the SCN and the SRN, a derivative classifier needs to be involved in the decision,
as well as consumers of the information, to determine what their needs are for editing, reading,
tracing, and generating reports. The architectures should be the same for both SRN and SCN
DOORS projects for optimal maintenance and management, with the possible exception of the
folder structure. Detailed processes should be developed and implemented to manage the two
repositories of requirements, including auditing processes.

We have had success creating and editing requirements on the SRN and then using the Reliable
Automated File Transfer Service (RAFTS) to transfer modules to the SCN that have read-only
access. See SCN RAFTS for more information. However, this precludes any linking on the SCN,
as you need editing permissions to link.

Our unclassified information architecture models, scripts, and other DOORS functionality are
developed on the SRN and managed in either DOORS or the TeamForge SVN repository. The
information is then released to the SRN and/or SCN using a formal release process. If the script
or model is classified, it is created and maintained only on the SCN.

An SCN DOORS project may need to link to information used by several projects that are stored
in another SRN DOORS project, such as a subset of the D&P Manual or the Technical Business
Practices in the Nuclear Weapons program. One option for addressing this situation is to RAFT
the modules from the SRN DOORS project, i.e., the gold copy of the information, to the SCN

https://sasn704.sandia.gov/cgi-bin/rafts/RAFTS-srn.pl
https://sasn704.sandia.gov/cgi-bin/rafts/RAFTS-srn.pl

Version 1.0 49 November 2014

DOORS project. Then link from the requirement object to the object in the reference document.
A process to keep the project information in sync with the gold copy data needs to be developed.
A second option is to create a Document Reference module on the SCN and list all of the
documents so they are uniquely identified. Then link from the requirement object to the
document object. This relationship is a coarser granularity than the first option but requires less
synchronization oversight.

3.3.4. Describing and Viewing Data Content

A template module containing standard attributes, types, and views can be used to create all
requirements modules or administrative modules, which ensures that the modules contain the
same attributes, types, and views. This is important so that you are not “managing by exception”
and that all of the attributes and types exist in every module to execute DXL scripts or run RPE
reports. If an attribute or view is not applicable in a module, then the users just ignore it. We
recommend maintaining one template for the entire project and using naming standards to
indicate standard vs. non-standard attributes or views, or administrative vs. technical attributes.

The ReqMAPS team has a global template module that we use for all of the DOORS projects
that we support. If there are project-specific needs, we create a project-specific template, based
on the global template. The global template is managed and maintained on the SRN and RAFTed
to the SCN if needed.

The ReqMAPS team has developed DXL auditing scripts to identify any attributes, types, and
views in DOORS that are not in the template module. This provides a way to keep the
information architecture intact. If new or modified attributes, types, and views are discovered
during the audits, the architects can talk with the staff that made the changes to find out their
reasons for the changes. Typically the users didn’t understand the architecture or their needs are
not being met. The changes can be analyzed and potentially implemented.

3.4. Security Model

Every DOORS project will have a different security model to control access to the project,
folders, and modules, as well as controlling permissions for reading, creating, modifying,
deleting, and administering information. The security model balances risk and administrative
burden. The first questions to ask when defining a security model are the following:

 What are the risks if everyone on the project has full permissions on all of the
information?

 Can the project adequately manage those risks?

 Can we afford the administrative burden to manage a stringent security model, both in
dollars and staff?

 Can we ensure that staff will have access to all the information they need to perform their
work in a timely manner?

Identifying the project roles, the tasks each role performs, and how each role interacts with the
DOORS data will help determine the security model. In addition, some information is inherently

Version 1.0 50 November 2014

more sensitive and may require more stringent controls. There may be many people performing
work in multiple roles on a larger project, and it is critical for each person to understand and
respect the boundaries of the various roles. If there is a history of unauthorized edits made to
information by a person not in a designated role, chaos could ensue and trust relationships
broken. This may force a redesign of the security model.

Modules and all of the information they contain should inherit the DOORS permissions for read,
create, modify, delete, and administer from the parent folder. Inheritance can be broken at the
project or folder level, as that is relatively easy to manage. Using metagroups to control access to
projects, folders, and modules is required for the CEE and Org. 5700 DOORS installations at
Sandia, even if there is just one metagroup controlling access to the entire project. All
metagroups should have at least Read access at the project level. This ensures proper inheritance
as well as migrating data with the correct metagroups to a different DOORS installation or
possibly a different requirements tool.

If the security model seems overly complex, such as controlling access at the attribute level for
individual requirement objects, then you need to reanalyze the linking, folder, module, and
security models. Most likely you are trying to use attributes when linking would be more
appropriate.

3.5. Supporting the Requirements Engineering Process

3.5.1. Data Content and Information Architecture Change Management

Change management processes should be defined for both the data content and the DOORS
architecture.

3.5.1.1. Data Content Change Management

While requirements change management functionality is included in the DOORS application, we
consider the functionality to be woefully inadequate for comprehensive requirements change
management. Note that the change management is at the requirement object level, which is not
the same as using a version control system to manage the reports generated from DOORS.
Change management must be conducted at both levels.

A manual process for change management can be implemented, but there is no way to enforce
that process within DOORS, such as with automated tools. IBM’s Rational Team Concert (RTC)
tool for requirements change management integrates with the DOORS application and provides
comprehensive requirements change management functionality. The RTC tool requires a
learning curve to design and implement the change management workflows, and the software
tool needs to be stood up and maintained. However, for medium- to large-sized or complex
projects, we recommend standing up the tool and planning the change workflows as it is less
costly than reacting to fix problems when unauthorized, unapproved, or non-communicated
changes are made to requirements.

3.5.1.2. Architecture Change Management

Version 1.0 51 November 2014

All changes to the information architecture must follow an information architecture change
management process. This encompasses changes to the security model, attributes, types, views,
modules, and folder structure. Proposed changes should be analyzed, tested, and documented
before implementation. Changes to the information architecture can be captured as they occur by
updating a module specifically for this purpose. We have used a module called
“ArchitectureChangeLog.lup” to record details of the information architecture change, including
description, rationale, implementer, and implementation date.

The following is a change management process that can be implemented manually:

1. Submit proposed change, using a tracking system such as a Tracker in TeamForge.

2. Discuss the proposed change with the appropriate staff and management to understand
the proposed change, technical implications and risk, options for implementing, resources
required, and schedule. Decide whether the change should be implemented and if so, if
there are any adjustments to the original proposed change. Document all of this in the
tracking system.

3. If approved, implement the proposed changes in your DOORS quality environment. The
quality environment could be DOORS on the quality server or a separate project you
have created in DOORS to use as the quality environment, which is protected with more
stringent access controls.

4. Define and conduct testing, following your testing processes. Special attention is paid to
how the change would affect DXL scripts, views, filtering, traceability, and reporting, as
well as data exported to other applications such as Rhapsody.

5. Review the implementation in the DOORS quality environment with the appropriate staff
and management. If needed, modifications are made, tested and reviewed.

6. Document testing and reviewing results in the tracking system.

7. Obtain approval to install the change in the DOORS production environment.

8. Notify users about any down time while installing the information architecture change in
the DOORS production environment, along with the description of the changes.

9. Make the proposed changes in the DOORS production environment.

10. Update the documentation and communicate details of the information architecture
change. The project information architecture document or modules are also updated, if
needed.

11. Update and close the item in the tracking system, communicate the changes to the users,
and publish the updated documentation.

3.5.2. Baselining

A baseline is a read-only version of a module that captures a point in time of the module. We
recommend using two types of baselines: formal and checkpoint. A formal (FML) baseline

Version 1.0 52 November 2014

should be used to capture a formal snapshot of requirement configuration items that represent the
requirements and associated data at a specific point in time which represents a significant project
milestone. Once requirements have been formally baselined, a change management process
should be followed to make subsequent changes to the requirements.

There are other points in time during the requirement lifecycle when a snapshot of requirement
configuration items may be taken, but the snapshot is not a formal baseline requiring change
management processes to be enacted. To differentiate these requirement snapshots from the
formal baseline snapshots, we refer to these other snapshots as checkpoints (CKP) or checkpoint
baselines.

3.5.2.1. Baselining Process

The process of creating either a formal baseline or a checkpoint is called baselining, and both
formal baselines and checkpoints are referred to generically as baselines. The DOORS tool has a
baseline capability, and the terminology used in the tool is baseline. When using the baseline
terminology with respect to the DOORS capability, it includes actions taken within DOORS and
the result of those actions within DOORS.

Every baseline is assigned a baseline version as part of the DOORS baselining steps. The
standard format for a baseline version is

<major number>.<minor number> .<number>[_<brief description>]_<baseline type>

The major and minor numbers are required by DOORS whenever a DOORS baseline is created.
They also are controlled by DOORS so that only certain options are allowed. The rest of the
baseline version is an optional suffix for a DOORS baseline and may contain unique identifying
information that makes it easier to understand the type of baseline (FML or CKP) and the
purpose.

An example baseline version for a Formal baseline is 1.1.0_milestoneFY14M2_FML where

 1 is the major number

 0 is the minor number

 0 is an identifying number

 “milestoneFY14M2” indicates a capture for a project milestone

 FML indicates it is a formal baseline and the contents should be placed under change
control

An example of a baseline version for a Checkpoint baseline is 2.2.0_preFagan_CKP where

 2 is the major number

 2 is the minor number indicating the second baseline of the contents

 0 is an identifying number

 “preFagan” indicates a capture prior to a Fagan inspection of the versioned contents

Version 1.0 53 November 2014

 “CKP” indicates it is a checkpoint baseline and the contents are not placed under change
control

A detailed description of the steps needed for baselining requirements in DOORS can be found
in the DOORS Requirements Baselining Procedures document on Sandia’s DOORS SharePoint
site at
https://sharepoint.sandia.gov/sites/DOORS/SitePages/Home.aspx?RootFolder=%2Fsites%2FDO
ORS%2FDOORS%20User%20Documentation%2FHow%20To%27s. A DOORS baseline does
not include views and external DXL code, that is DXL code kept on the file system and not
stored in a DXL attribute in DOORS. The referenced baselining procedures includes instructions
and suggestions for capturing views and external DXL.

3.5.2.2. Baseline Sets

A DOORS baseline is a snapshot of a single module at a particular point in time. Requirements
information may exist in multiple modules in DOORS, so every module that contains
information relevant to the requirements needs to be included when baselining requirements. If
you need to capture information in more than one module or capture relationships (links)
between the modules, then a DOORS baseline set should be used.

Per the DOORS manual “[a] baseline set is a group of baselines that you want to treat as a single
unit for project planning and management purposes.” For our purposes, the key reason for using
baseline sets is to baseline links. If a baseline set is not used, then links will point to the current
version of the object in the target module regardless of whether the target module has been
baselined. This means that if the content of the object linked to in the target module changes,
then we will have lost what was being linked to at the time of the baseline. Figure 13 illustrates
the impact of baseline sets on linked information and baselines.

https://sharepoint.sandia.gov/sites/DOORS/SitePages/Home.aspx?RootFolder=%2Fsites%2FDOORS%2FDOORS%20User%20Documentation%2FHow%20To%27s
https://sharepoint.sandia.gov/sites/DOORS/SitePages/Home.aspx?RootFolder=%2Fsites%2FDOORS%2FDOORS%20User%20Documentation%2FHow%20To%27s

Version 1.0 54 November 2014

Baseline Set: Change in Current Module Does Not Affect Baseline

satisfies

The subsystem shall send an
acknowledgement in <= .5
seconds.

satisfies

The system shall respond in <=
1 second.

The subsystem shall send an
acknowledgement in <= .25
seconds.

If the system and subsystem modules are baselined through a baseline set, then the
baselined subsystem module links to the baselined system module, and the change to the
system requirement in the current system module does not impact what the baselined
subsystem requirement is linked to.

Key
current
baselinesatisfiesThe system shall respond in <=

2 seconds.

The subsystem shall send an
acknowledgement in <= .5
seconds.

System and Subsystem Requirements Baselined Not Using a
Baseline Set

The subsystem shall send an
acknowledgement in <= .5
seconds.

satisfies

No Baseline Set: Change in Current Module Affects Baseline

satisfiesThe system shall respond in <=
1 second.

The subsystem shall send an
acknowledgement in <= .5
seconds.

satisfiesThe requirement in the current
system module has changed, and the
baselined subsystem requirement
points to the changed system
requirement. We have lost what the
baselined subsystem requirement
used to link to.

The subsystem shall send an
acknowledgement in <= .25
seconds.

The system shall respond in <=
2 seconds.

The system shall respond in <=
2 seconds.

Without a baseline set, the
link from the baselined
subsystem requirement
goes to the current system
module, not the baselined
system module.

Figure 13 Baseline Sets and the Impact on Linked Information

Version 1.0 55 November 2014

So, the key in determining whether a baseline set is needed is determining whether the linking
needs to be preserved.

The following criteria can be used in determining what should be included in the baseline set:

1. The main requirements module hierarchy should be captured.

2. Any module that is a target or source module of a linkset for the modules in the main
requirements hierarchy may be included in the baseline. If the information from a target
or source module is providing significant data in the main requirements module (e.g.
through a DXL attribute or layout DXL column created through the analysis wizard),
then that target or source module should be included in the baseline.

We also recommend an additional means of saving links in a baseline or baseline set by using a
utility that is part of the DOORS add-on PS Toolbox. The utility in the PS Toolbox is called
“Save links as an Attribute.” The utility is run in the source module of a linkset and saves the
absolute number of the target object of the link in an attribute of the source module. This
provides a secondary capture of the links that is independent of the link module. More
information about saving link information using the “Save links as an Attribute” utility can be
found in the DOORS Requirements Baselining Procedures document on Sandia’s DOORS
SharePoint site at
https://sharepoint.sandia.gov/sites/DOORS/SitePages/Home.aspx?RootFolder=%2Fsites%2FDOORS%2
FDOORS%20User%20Documentation%2FHow%20To%27s.

3.5.2.3. Locations of Baseline Sets in the DOORS Structure

Baseline sets are maintained within the DOORS folder hierarchy and are part of the folder data.
To determine which baseline sets are available, right click on a folder, select Properties, and go
to the Baseline Set Definitions tab. To see if an existing Baseline of a module is associated with
a baseline set, use the “Baseline -> View” command from the DOORS File menu item within the
module.

To capture baseline sets, there are two philosophical views on the best architectural approach.
One is to create a specific folder with a meaningful name and do not include formal modules
within the folder. The folder should be associated with a particular level in your hierarchy. An
example hierarchy with corresponding baseline set folders illustrating this recommendation is
shown in Figure 14. The advantage of this architectural setup is that the location of the baseline
sets is very clear, especially for users who access the baseline sets infrequently. The
disadvantage is a parallel folder structure with empty folders has to be set up and maintained.
Furthermore, the empty folders can be confusing for a novice or periodic user who does not
understand that the baseline sets are part of the folder data and is looking for an object within the
folder. If the architecture change management is weak, then a risk exists of someone deleting the
seemingly unused baseline sets folders. If the folder is deleted, the baseline sets are lost. (We
know about this risk because it occurred in a very early incarnation of an architecture we had set
up.)

The other architectural approach is to define the baseline sets directly on the level folder. With
this approach, the parallel folder hierarchy is not necessary; however, the existence and location
of baseline sets are not obvious. The risk of the folder with the defined baseline sets being

https://sharepoint.sandia.gov/sites/DOORS/SitePages/Home.aspx?RootFolder=%2Fsites%2FDOORS%2FDOORS%20User%20Documentation%2FHow%20To%27s
https://sharepoint.sandia.gov/sites/DOORS/SitePages/Home.aspx?RootFolder=%2Fsites%2FDOORS%2FDOORS%20User%20Documentation%2FHow%20To%27s

Version 1.0 56 November 2014

deleted is much lower because the folder does not appear unused; however, this option can make
changing the folder structure more difficult or tricky because a change can impact the association
of the baseline sets on the folder.

Deciding which architectural approach is better depends heavily on the knowledge and
experience of the users that will be accessing the baseline sets, the knowledge and experience of
those who will have permissions to delete folders, the level of support available for maintaining
the architecture, the stability of the architecture, and the maturity of the architecture change
management process.

Key

Project

Folder

Project

_Admin

Rqmts

TempArchive

Templates

Architecture

RqmtsBaselineSets

Level1BaselinesSets

Level2BaselineSets

Level3BaselineSets

Level4BaselineSets

Level3

Level4

Level1

Level2

Baseline Sets in the parent folder contain
modules from any number of child folders.

Figure 14: The Baseline Folder Structure

Version 1.0 57 November 2014

4. REFERENCES

1. Shelley M. Eaton, Gregory N. Conrad, Identifying and Implementing Patterns in Data
Models (U), SAND2003-0804, Sandia National Laboratories, Albuquerque, NM (SRD),
March 2003.

Version 1.0 58 November 2014

DISTRIBUTION

1 MS0899 Technical Library 9536 (electronic copy)

Version 1.0 59 November 2014

Version 1.0 60 November 2014

